论文标题
多尺度高斯 - 骨网重力:超出自发标量的标量黑洞
Multi-scalar Gauss-Bonnet gravity: scalarized black holes beyond spontaneous scalarization
论文作者
论文摘要
最近,证明存在一种与标准自发标量不同的黑洞标量化的新的非线性机制,这对于标量高斯 - 骨网理论而言存在,其中不可发生速度不稳定性。因此,Schwarzschild黑洞是线性稳定的,但非线性不稳定性可以启动。 在本文中,如果多尺度高斯 - 骨网重力,我们在标量场中具有第三和第四领先顺序的指数耦合函数。主要动机来自以下事实:这些理论接纳了具有零标量电荷的毛茸茸的紧凑型物体,因此零标量 - 偶极辐射,它们自动逃避了对理论参数的二进制脉冲星约束。我们从数值上证明了耦合函数的标量黑洞的存在,以及所有可能的最大对称标量磁场目标空间的存在。还讨论了所获得的溶液分支的热力学和稳定性。
Recently, a new nonlinear mechanism for black hole scalarization, different from the standard spontaneous scalarization, was demonstrated to exist for scalar Gauss-Bonnet theories in which no tachyonic instabilities can occur. Thus Schwarzschild black hole is linearly stable but instead nonlinear instability can kick-in. In the present paper we extend on this idea in the case of multi-scalar Gauss-Bonnet gravity with exponential coupling functions of third and fourth leading order in the scalar field. The main motivation comes from the fact that these theories admit hairy compact objects with zero scalar charge, thus zero scalar-dipole radiation, that automatically evades the binary pulsar constraints on the theory parameters. We demonstrate numerically the existence of scalarized black holes for both coupling functions and for all possible maximally symmetric scalar field target spaces. The thermodynamics and the stability of the obtained solution branches is also discussed.