论文标题
$ h'(z)$的神经网络重建及其在触发性重力中的应用
Neural Network Reconstruction of $H'(z)$ and its application in Teleparallel Gravity
论文作者
论文摘要
在这项工作中,我们探讨了使用人工神经网络对远程平行重力及其$ f(t)$扩展的限制。我们使用来自宇宙天元计的可用哈勃参数观测值和来自不同星系调查的巴属声学振荡。我们讨论训练网络模型以重建哈勃图的过程。此外,我们描述了使用人工神经网络获得$ h(z)$的$ h'(z)$的程序,这是这种重建方法的新方法。 These analyses are complemented with further studies on the impact of two priors which we put on $H_0$ to assess their impact on the analysis, which are the local measurements by the SH0ES team ($H_0^{\text{R20}} = 73.2 \pm 1.3$ km Mpc$^{-1}$ s$^{-1}$) and the updated TRGB calibration from the Carnegie Supernova Project($ H_0^{\ text {trgb}} = 69.8 \ pm 1.9 $ km mpc $^{ - 1} $ s $ s $^{ - 1} $)。此外,我们通过与这些重建的数据集的一些宇宙学零测试一起研究了一致性模型的有效性。最后,我们重建允许的$ f(t)$函数,以用于观察性哈勃数据集的不同组合。结果表明,$λ$ CDM模型在所有检查的情况下舒适地包含在1 $σ$置信度下。
In this work, we explore the possibility of using artificial neural networks to impose constraints on teleparallel gravity and its $f(T)$ extensions. We use the available Hubble parameter observations from cosmic chronometers and baryon acoustic oscillations from different galaxy surveys. We discuss the procedure for training a network model to reconstruct the Hubble diagram. Further, we describe the procedure to obtain $H'(z)$, the first order derivative of $H(z)$, using artificial neural networks which is a novel approach to this method of reconstruction. These analyses are complemented with further studies on the impact of two priors which we put on $H_0$ to assess their impact on the analysis, which are the local measurements by the SH0ES team ($H_0^{\text{R20}} = 73.2 \pm 1.3$ km Mpc$^{-1}$ s$^{-1}$) and the updated TRGB calibration from the Carnegie Supernova Project ($H_0^{\text{TRGB}} = 69.8 \pm 1.9$ km Mpc$^{-1}$ s$^{-1}$), respectively. Additionally, we investigate the validity of the concordance model, through some cosmological null tests with these reconstructed data sets. Finally, we reconstruct the allowed $f(T)$ functions for different combinations of the observational Hubble data sets. Results show that the $Λ$CDM model lies comfortably included at the 1$σ$ confidence level for all the examined cases.