论文标题
晶格不稳定性和分层PBIF的超低晶格导热率
Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF
论文作者
论文摘要
了解各种设计策略(例如,键合异质性和孤对引起的非谐波性)之间的相互作用以实现超低晶格导热率($κ_L$)是必不可少的。在本研究中,我们研究了分层的PBXF(X = Cl,Br,I),该研究通过分层的晶体结构提供了粘合异质性,通过PB $^{2+} $ 6S^2 $ lone对通过pb $^{2+} $ 6S^2 $ lone对,以及通过F和PB/x之间的质量差来柔软。弱的层间范德华键和较强的层内离子键与部分共价键合成导致明显的粘结异质性和在平面外方向上的较差的声子传输。大型的Grüneisen参数($ \ geq $ 2.5)表现出强烈的非谐度。计算的声子分散体显示了平坦的频带,这表明短声子寿命,尤其是对于PBIF。增强的天生有效费用是由于交叉隙杂交引起的。 PBIF以少量扩展为0.1 $ \%$显示了晶格不稳定。由两个通道传输模型获得的$κ_l$值比求解Boltzmann传输方程获得的$ 20-50 $ \%$高。总体而言,在300 K处发现了超低$κ_l$值,尤其是对于PBIF。我们建议,键合,孤对的相互作用诱导了非谐度,并且具有高质量差异的组成元素有助于设计用于热能应用的低$κ_l$材料的设计。
Understanding the interplay between various design strategies (for instance, bonding heterogeneity and lone pair induced anharmonicity) to achieve ultralow lattice thermal conductivity ($κ_l$) is indispensable for discovering novel functional materials for thermal energy applications. In the present study, we investigate layered PbXF (X = Cl, Br, I), which offers bonding heterogeneity through the layered crystal structure, anharmonicity through the Pb$^{2+}$ $6s^2$ lone pair, and phonon softening through the mass difference between F and Pb/X. The weak inter-layer van der Waals bonding and the strong intra-layer ionic bonding with partial covalent bonding result in a significant bonding heterogeneity and a poor phonon transport in the out-of-plane direction. Large average Grüneisen parameters ($\geq$ 2.5) demonstrate strong anharmonicity. The computed phonon dispersions show flat bands, which suggest short phonon lifetimes, especially for PbIF. Enhanced Born effective charges are due to cross-band-gap hybridization. PbIF shows lattice instability at a small volume expansion of 0.1$\%$. The $κ_l$ values obtained by the two channel transport model are 20-50$\%$ higher than those obtained by solving the Boltzmann transport equation. Overall, ultralow $κ_l$ values are found at 300 K, especially for PbIF. We propose that the interplay of bonding heterogeneity, lone pair induced anharmonicity, and constituent elements with high mass difference aids the design of low $κ_l$ materials for thermal energy applications.