论文标题
基于对象的活动推理
Object-based active inference
论文作者
论文摘要
世界由对象组成:具有独立属性和动态的不同实体。为了使代理人聪明地与世界互动,他们必须将感觉输入转化为描述每个对象的边界特征。这些基于对象的表示形成了计划行为的自然基础。主动推断(AIF)是对感知和行动的影响力的统一说明,但是现有的AIF模型并未利用这种重要的归纳偏见。为了解决这个问题,我们介绍了“基于对象的主动推理”(OBAI),将AIF与最近基于对象的神经网络结合在一起。 Obai代表具有独立变异信念的不同对象,并使用选择性注意将输入输入到相应的对象插槽中。对象表示具有独立的基于动作的动态。动力学和生成模型是从一个简单环境(主动多-DSPRITES)的经验中学到的。我们表明,Obai学会了从视频输入中正确分割动作扰动的对象,并将这些对象操纵到任意目标。
The world consists of objects: distinct entities possessing independent properties and dynamics. For agents to interact with the world intelligently, they must translate sensory inputs into the bound-together features that describe each object. These object-based representations form a natural basis for planning behavior. Active inference (AIF) is an influential unifying account of perception and action, but existing AIF models have not leveraged this important inductive bias. To remedy this, we introduce 'object-based active inference' (OBAI), marrying AIF with recent deep object-based neural networks. OBAI represents distinct objects with separate variational beliefs, and uses selective attention to route inputs to their corresponding object slots. Object representations are endowed with independent action-based dynamics. The dynamics and generative model are learned from experience with a simple environment (active multi-dSprites). We show that OBAI learns to correctly segment the action-perturbed objects from video input, and to manipulate these objects towards arbitrary goals.