论文标题

直接分解符号矢量空间和Mazur-Ulam定理的分解

Decompositions in direct sum of seminormed vector spaces and Mazur-Ulam theorem

论文作者

Dovgoshey, Oleksiy, Prestin, Jürgen, Shevchuk, Igor

论文摘要

S. Mazur和S. ulam在1932年证明,规范的实际矢量空间之间的每个等距陈述都是仿射。我们概括了Mazur-ulam定理,并找到了必要的和充分的条件,在这些条件下,符号的真实矢量空间之间的距离保护映射是线性的。

It was proved by S. Mazur and S. Ulam in 1932 that every isometric surjection between normed real vector spaces is affine. We generalize the Mazur--Ulam theorem and find necessary and sufficient conditions under which distance-preserving mappings between seminormed real vector spaces are linear.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源