论文标题

从蒙特卡洛到边界价值问题的神经网络近似

From Monte Carlo to neural networks approximations of boundary value problems

论文作者

Beznea, Lucian, Cimpean, Iulian, Lupascu-Stamate, Oana, Popescu, Ionel, Zarnescu, Arghir

论文摘要

在本文中,我们研究了在$ \ mathbb {r}^d $的一般界限中,托管方程解决方案解决方案的概率和神经网络近似。我们的目标是两个基本目标。 第一个,也是最重要的是,我们表明,在蒙特卡洛方法中,可以在SUP-NORM中进行数值近似的泊松方程解决方案,并且如果我们使用Spheres Algorithm上的步行版本作为加速度方法,则可以高效地进行此操作。这提供了相对于规定的近似误差以及误差的多项式复杂性和多项式复杂性的估计值。一个关键特征是,样品的总数不取决于执行近似的点。 作为第二个目标,我们表明,获得的蒙特卡洛求解器以建设性的方式依赖深度神经网络(DNN)解决方案呈现到泊松问题,其大小最多取决于尺寸$ d $,并且在所需的错误中。实际上,我们表明随机DNN具有很高的近似值误差和较低的多项式复杂性。

In this paper we study probabilistic and neural network approximations for solutions to Poisson equation subject to Holder data in general bounded domains of $\mathbb{R}^d$. We aim at two fundamental goals. The first, and the most important, we show that the solution to Poisson equation can be numerically approximated in the sup-norm by Monte Carlo methods, and that this can be done highly efficiently if we use a modified version of the walk on spheres algorithm as an acceleration method. This provides estimates which are efficient with respect to the prescribed approximation error and with polynomial complexity in the dimension and the reciprocal of the error. A crucial feature is that the overall number of samples does not not depend on the point at which the approximation is performed. As a second goal, we show that the obtained Monte Carlo solver renders in a constructive way ReLU deep neural network (DNN) solutions to Poisson problem, whose sizes depend at most polynomialy in the dimension $d$ and in the desired error. In fact we show that the random DNN provides with high probability a small approximation error and low polynomial complexity in the dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源