论文标题

量子和经典的分支在时空中

Quantum and classical branching flow in space and time

论文作者

Šťavina, Jakub, Bokes, Peter

论文摘要

分支流 - 一种在二维弱相关随机电位中以稳定波传播而闻名的现象在时间依赖性的schrödinger方程中,单个粒子在一个维度上,以波动的随机电势移动。我们使用数值模拟探索了该模型的二维参数空间,并确定其经典区域,其中只有一个经典参数足以用于其规范以及其量子区域,而在这种情况下则无法简化。我们还确定了参数空间的区域,其中相关的经典白噪声模型的已知分析结果是相关的。根据分支时间尺度和与粒子的动能有关的新时间尺度讨论量子和经典粒子动力学的定性行为。

Branching flow -- a phenomenon known for steady wave propagation in two-dimensional weak correlated random potential is also present in the time-dependent Schrödinger equation for a single particle in one dimension, moving in a fluctuating random potential. We explore the two-dimensional parameter space of this model using numerical simulations and identify its classical regions, where just one classical parameter is sufficient for its specification, and its quantum region, where such a simplification is not possible. We also identify region of the parameter space where known analytical results of a classical white-noise model are relevant. Qualitative behavior of quantum and classical particle dynamics is discussed in terms of branching time scale and a new time scale related to particle's kinetic energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源