论文标题
熵限制的瓦斯汀分布在稳健的形状和拓扑优化
Entropy-regularized Wasserstein distributionally robust shape and topology optimization
论文作者
论文摘要
此简短说明旨在介绍形状和拓扑优化领域中分布鲁棒性的最新范式。承认不确定物理数据的概率定律是在观察到的样本中构成的粗糙近似之外的概率定律,我们优化了设计不确定性的概率定律为“接近”的最差预期成本的最差案例价值,直至估计的一个规定的阈值。概率定律之间的``接近度''由Wasserstein距离量化,这是与最佳运输理论有关的概念。在该领域的经典熵正则化技术与凸双重性理论的最新结果相结合,可以以一种可用于计算的方式来重新重新重新分配强大的优化问题。在基于密度的拓扑优化和几何形状优化的不同设置中提供了两个数值示例。无论选定的最佳设计框架如何,它们都体现了所提出的配方的相关性和适用性。
This brief note aims to introduce the recent paradigm of distributional robustness in the field of shape and topology optimization. Acknowledging that the probability law of uncertain physical data is rarely known beyond a rough approximation constructed from observed samples, we optimize the worst-case value of the expected cost of a design when the probability law of the uncertainty is ``close'' to the estimated one up to a prescribed threshold. The ``proximity'' between probability laws is quantified by the Wasserstein distance, a notion pertaining to optimal transport theory. The combination of the classical entropic regularization technique in this field with recent results from convex duality theory allows to reformulate the distributionally robust optimization problem in a way which is tractable for computations. Two numerical examples are presented, in the different settings of density-based topology optimization and geometric shape optimization. They exemplify the relevance and applicability of the proposed formulation regardless of the selected optimal design framework.