论文标题
在恒定曲率表面上的地球圆台球的扰动中谐振不变圆的分解
Break-up of resonant invariant circles in perturbations of the geodesic circular billiard on surfaces of constant curvature
论文作者
论文摘要
我们研究了水平不变圆的非持久性,用于在恒定曲率表面上的地球圆形台球的地球凸电扰,并表明拉米雷斯 - 罗斯为平面病例获得的结果仍然是在具有恒定曲率的表面上对台球的真实。
We study the non-persistence of horizontal invariant circles for geodesically convex perturbations of the geodesic circular billiard on surfaces of constant curvature and show that the result obtained by Ramírez-Ros for the planar case, remains true for billiards on surfaces with constant curvature.