论文标题
量子计算机中错误传播的分析
Analysis of Error Propagation in Quantum Computers
论文作者
论文摘要
大多数量子门误差可以通过两个错误模型来表征,即概率错误模型和KRAUS误差模型。我们证明,对于具有这两种模型中的量子电路或两者的混合物,在Frobenius Norm方面的传播误差为$ 2(1-(1-(1-(1- r)^m)$,其中$ 0 \ le r <1 $是与Qubit号码和电路深度无关的常数,并且$ M $是电路中的gates数量。在IBM Vigo量子计算机的模拟器上进行了合成量子电路和量子傅立叶变换电路的数值实验,以验证我们的分析结果,这表明我们的上限很紧。
Most quantum gate errors can be characterized by two error models, namely the probabilistic error model and the Kraus error model. We proved that for a quantum circuit with either of those two models or a mix of both, the propagation error in terms of Frobenius norm is upper bounded by $2(1 - (1 - r)^m)$, where $0 \le r < 1$ is a constant independent of the qubit number and circuit depth, and $m$ is the number of gates in the circuit. Numerical experiments of synthetic quantum circuits and quantum Fourier transform circuits are performed on the simulator of the IBM Vigo quantum computer to verify our analytical results, which show that our upper bound is tight.