论文标题
感知单纯性:在障碍物检测故障的自动驾驶汽车中避免碰撞的碰撞
Perception Simplex: Verifiable Collision Avoidance in Autonomous Vehicles Amidst Obstacle Detection Faults
论文作者
论文摘要
深度学习的进步彻底改变了网络物理应用,包括自动驾驶汽车的开发。但是,涉及对车辆的自主控制的现实碰撞对在安全至关重要的任务(尤其是感知)中使用深度神经网络(DNN)的使用引起了严重的安全问题。 DNN的固有无法验证性在确保其安全可靠的操作方面构成了关键挑战。 在这项工作中,我们提出了一种感知单纯形(PS),这是一种易受故障的应用体系结构,旨在避免障碍物检测和碰撞。我们分析了现有的基于激光雷达的经典障碍检测算法,以确定其功能和局限性的严格界限。对于基于深度学习的感知系统,这种分析和验证尚不可能。通过采用可验证的障碍检测算法,PS可以在无法验证的基于DNN的对象检测器的输出中识别障碍物的存在故障。当检测到具有潜在碰撞风险的故障时,会启动适当的纠正措施。通过广泛的分析和循环模拟软件,我们证明了PS可以针对障碍物检测故障提供可预测的确定性容错性,从而建立了可靠的安全保证。
Advances in deep learning have revolutionized cyber-physical applications, including the development of Autonomous Vehicles. However, real-world collisions involving autonomous control of vehicles have raised significant safety concerns regarding the use of Deep Neural Networks (DNN) in safety-critical tasks, particularly Perception. The inherent unverifiability of DNNs poses a key challenge in ensuring their safe and reliable operation. In this work, we propose Perception Simplex (PS), a fault-tolerant application architecture designed for obstacle detection and collision avoidance. We analyze an existing LiDAR-based classical obstacle detection algorithm to establish strict bounds on its capabilities and limitations. Such analysis and verification have not been possible for deep learning-based perception systems yet. By employing verifiable obstacle detection algorithms, PS identifies obstacle existence detection faults in the output of unverifiable DNN-based object detectors. When faults with potential collision risks are detected, appropriate corrective actions are initiated. Through extensive analysis and software-in-the-loop simulations, we demonstrate that PS provides predictable and deterministic fault tolerance against obstacle existence detection faults, establishing a robust safety guarantee.