论文标题

ADTR:具有特征重建的异常检测变压器

ADTR: Anomaly Detection Transformer with Feature Reconstruction

论文作者

You, Zhiyuan, Yang, Kai, Luo, Wenhan, Cui, Lei, Zheng, Yu, Le, Xinyi

论文摘要

由于缺乏异常样品,因此仅具有正常样品的先验知识的异常检测才吸引更多的注意力。现有的基于CNN的像素重建方法遇到了两个问题。首先,重建源和目标是包含无法区分的语义信息的原始像素值。其次,CNN倾向于很好地重建正常样品和异常情况,因此仍然很难区分。在本文中,我们提出异常检测变压器(ADTR)将变压器应用于重建预训练的特征。预训练的功能包含可区分的语义信息。同样,采用变压器限制以很好地重构异常,因此一旦重建失败,就可以轻松检测到异常。此外,我们提出了新的损失函数,使我们的方法与正常样本的情况以及图像级和像素级标记为异常的异常情况兼容。通过添加简单的合成或外部无关异常,可以进一步提高性能。在包括MVTEC-AD和CIFAR-10在内的异常检测数据集上进行了广泛的实验。与所有基线相比,我们的方法可以达到卓越的性能。

Anomaly detection with only prior knowledge from normal samples attracts more attention because of the lack of anomaly samples. Existing CNN-based pixel reconstruction approaches suffer from two concerns. First, the reconstruction source and target are raw pixel values that contain indistinguishable semantic information. Second, CNN tends to reconstruct both normal samples and anomalies well, making them still hard to distinguish. In this paper, we propose Anomaly Detection TRansformer (ADTR) to apply a transformer to reconstruct pre-trained features. The pre-trained features contain distinguishable semantic information. Also, the adoption of transformer limits to reconstruct anomalies well such that anomalies could be detected easily once the reconstruction fails. Moreover, we propose novel loss functions to make our approach compatible with the normal-sample-only case and the anomaly-available case with both image-level and pixel-level labeled anomalies. The performance could be further improved by adding simple synthetic or external irrelevant anomalies. Extensive experiments are conducted on anomaly detection datasets including MVTec-AD and CIFAR-10. Our method achieves superior performance compared with all baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源