论文标题

部分可观测时空混沌系统的无模型预测

SlateFree: a Model-Free Decomposition for Reinforcement Learning with Slate Actions

论文作者

Giovanidis, Anastasios

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider the problem of sequential recommendations, where at each step an agent proposes some slate of $N$ distinct items to a user from a much larger catalog of size $K>>N$. The user has unknown preferences towards the recommendations and the agent takes sequential actions that optimise (in our case minimise) some user-related cost, with the help of Reinforcement Learning. The possible item combinations for a slate is $\binom{K}{N}$, an enormous number rendering value iteration methods intractable. We prove that the slate-MDP can actually be decomposed using just $K$ item-related $Q$ functions per state, which describe the problem in a more compact and efficient way. Based on this, we propose a novel model-free SARSA and Q-learning algorithm that performs $N$ parallel iterations per step, without any prior user knowledge. We call this method \texttt{SlateFree}, i.e. free-of-slates, and we show numerically that it converges very fast to the exact optimum for arbitrary user profiles, and that it outperforms alternatives from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源