论文标题
在掌握和提升任务期间使用前移动脑电图的主题无关轨迹预测
Subject-independent trajectory prediction using pre-movement EEG during grasp and lift task
论文作者
论文摘要
可以将脑部计算机界面(BCI)系统用于从头皮大脑激活中解码到控制康复或功率增强设备的运动学。在这项研究中,使用头皮脑电图(EEG)信号在三维(3D)空间中进行掌握和提升任务的手动运动学解码。这项研究已使用了来自公开数据库Way-eeg-gal的12个主题。特别是,提出了基于多层感知器(MLP)和基于卷积的神经网络长期记忆(CNN-LSTM)深度学习框架,该框架采用了在体现前EEG数据中编码的运动神经信息。使用以七个频率范围过滤的脑电图数据分析了光谱特征,用于手动运动学解码。最佳性能频带光谱功能已被考虑用于进一步分析,具有不同的EEG窗口尺寸和滞后窗口。从移动发作中进行适当的滞后窗口,在真正意义上进行方法前进。此外,使用剩余的受试者(LOSO)方法进行了受试者间轨迹解码分析。皮尔逊相关系数和手轨迹被认为是评估神经解码器的解码性能的性能指标。这项研究探讨了仅在触及范围内使用EEG信号的受试者间3-D手轨迹解码的可行性,这可能是第一次。结果可能会提供可行的信息,以使用移动前的EEG信号来解码3D手运动,以用于实用的BCI应用,例如外骨骼/外膜和假体。
Brain-computer interface (BCI) systems can be utilized for kinematics decoding from scalp brain activation to control rehabilitation or power-augmenting devices. In this study, the hand kinematics decoding for grasp and lift task is performed in three-dimensional (3D) space using scalp electroencephalogram (EEG) signals. Twelve subjects from the publicly available database WAY-EEG-GAL, has been utilized in this study. In particular, multi-layer perceptron (MLP) and convolutional neural network-long short-term memory (CNN-LSTM) based deep learning frameworks are proposed that utilize the motor-neural information encoded in the pre-movement EEG data. Spectral features are analyzed for hand kinematics decoding using EEG data filtered in seven frequency ranges. The best performing frequency band spectral features has been considered for further analysis with different EEG window sizes and lag windows. Appropriate lag windows from movement onset, make the approach pre-movement in true sense. Additionally, inter-subject hand trajectory decoding analysis is performed using leave-one-subject-out (LOSO) approach. The Pearson correlation coefficient and hand trajectory are considered as performance metric to evaluate decoding performance for the neural decoders. This study explores the feasibility of inter-subject 3-D hand trajectory decoding using EEG signals only during reach and grasp task, probably for the first time. The results may provide the viable information to decode 3D hand kinematics using pre-movement EEG signals for practical BCI applications such as exoskeleton/exosuit and prosthesis.