论文标题

基于网格的3D运动跟踪在心脏MRI中使用深度学习

Mesh-based 3D Motion Tracking in Cardiac MRI using Deep Learning

论文作者

Meng, Qingjie, Bai, Wenjia, Liu, Tianrui, O'Regan, Declan P, Rueckert, Daniel

论文摘要

来自Cine心脏磁共振(CMR)图像的3D运动估计对于评估心脏功能和心血管疾病的诊断很重要。以前的大多数方法都侧重于估计完整图像空间中的像素 - /体素运动场,这忽略了运动估计主要在感兴趣的对象(例如心脏)中相关且有用的事实。在这项工作中,我们将心脏建模为3D几何网格,并提出了一种基于深度学习的新方法,可以从2D短轴和长轴CMR图像中估算心脏网格的3D运动。通过开发可区分的网格到图像射击器,该方法能够利用2D多视图CMR图像的解剖形状信息进行3D运动估计。栅格器的不同性使我们能够训练方法端到端。提出方法的一个优点是,通过跟踪每个顶点的运动,它可以保持时间帧之间3D网格的顶点对应关系,这对于对网格上心脏功能的定量评估很重要。我们评估了从英国生物银行研究获得的CMR图像的建议方法。实验结果表明,所提出的方法在定量和定性上都优于常规和基于学习的心脏运动跟踪方法。

3D motion estimation from cine cardiac magnetic resonance (CMR) images is important for the assessment of cardiac function and diagnosis of cardiovascular diseases. Most of the previous methods focus on estimating pixel-/voxel-wise motion fields in the full image space, which ignore the fact that motion estimation is mainly relevant and useful within the object of interest, e.g., the heart. In this work, we model the heart as a 3D geometric mesh and propose a novel deep learning-based method that can estimate 3D motion of the heart mesh from 2D short- and long-axis CMR images. By developing a differentiable mesh-to-image rasterizer, the method is able to leverage the anatomical shape information from 2D multi-view CMR images for 3D motion estimation. The differentiability of the rasterizer enables us to train the method end-to-end. One advantage of the proposed method is that by tracking the motion of each vertex, it is able to keep the vertex correspondence of 3D meshes between time frames, which is important for quantitative assessment of the cardiac function on the mesh. We evaluate the proposed method on CMR images acquired from the UK Biobank study. Experimental results show that the proposed method quantitatively and qualitatively outperforms both conventional and learning-based cardiac motion tracking methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源