论文标题
经典和量子随机步行以识别犯罪网络中的领导者
Classical and Quantum Random Walks to Identify Leaders in Criminal Networks
论文作者
论文摘要
随机步行模拟对象的随机性,并且是计算机科学,生物学和物理等各个领域的关键工具。量子力学中的经典随机步行的柜台部分是量子步行。量子步行算法在经典算法上提供了指数加速。经典和量子随机步行可以应用于社交网络分析中,可用于根据单层和多层网络的节点职业来定义特定的中心度指标。在本文中,我们将这些新的集中度措施应用于来自蒙塔格纳(Montagna)的一个反马法亚操作的三个真正的犯罪网络,以及从中得出的多层网络。我们的目的是(i)确定犯罪网络中的领导者,(ii)研究这些中心与程度之间的依赖性,(iii)将实际多层犯罪网络获得的结果与复制其结构的合成多层网络的结果进行比较。
Random walks simulate the randomness of objects, and are key instruments in various fields such as computer science, biology and physics. The counter part of classical random walks in quantum mechanics are the quantum walks. Quantum walk algorithms provide an exponential speedup over classical algorithms. Classical and quantum random walks can be applied in social network analysis, and can be used to define specific centrality metrics in terms of node occupation on single-layer and multilayer networks. In this paper, we applied these new centrality measures to three real criminal networks derived from an anti-mafia operation named Montagna and a multilayer network derived from them. Our aim is to (i) identify leaders in our criminal networks, (ii) study the dependence between these centralities and the degree, (iii) compare the results obtained for the real multilayer criminal network with those of a synthetic multilayer network which replicates its structure.