论文标题
在粗粒分辨率下的电子特性的预测
Prediction of Electronic Properties of Radical-Containing Polymers at Coarse-Grained Resolutions
论文作者
论文摘要
软电子材料的特性取决于在广泛的时空尺度上电子和构象自由度的耦合。对此类属性的描述需要同时访问电子特性并采样软材料的构象空间的多尺度方法。这可以原则上可以通过将足够构象采样所需的粗粒(CG)方法来实现,从而通过反向构象的电子特性分布与原子分辨率级别模型和重复的量子化学计算进行了构象平均的电子特性分布。但是,这种方法的计算需求阻碍了他们在高通量计算机辅助软材料发现中的应用。在这里,我们提出了一种结合机器学习和CG技术的方法,可以在不牺牲准确性的情况下替换传统的基于反向图的方法。我们说明了新兴的软电子材料类别的方法,即非偶联的,含有自由基的聚合物,有希望的全有机能量储存材料。对机器学习模型进行了培训,以了解电子特性对CG分辨率的聚合物构象的依赖性。然后,我们将保留电子结构信息,模拟CG凝结相的CG模型参数化,并仅根据CG自由度来预测此类阶段的电子性质。我们通过将方法与基于完整的基于反向图的方法进行比较来验证我们的方法,并在两种方法之间找到良好的一致性。这项工作证明了提出的方法加速多尺度工作流程的潜力,并为开发保留电子结构信息的CG模型提供了一个框架。
The properties of soft electronic materials depend on the coupling of electronic and conformational degrees of freedom over a wide range of spatiotemporal scales. Description of such properties requires multiscale approaches capable of, at the same time, accessing electronic properties and sampling the conformational space of soft materials. This could in principle be realized by connecting the coarse-grained (CG) methodologies required for adequate conformational sampling to conformationally-averaged electronic property distributions via backmapping to atomistic-resolution level models and repeated quantum-chemical calculations. Computational demands of such approaches, however, have hindered their application in high-throughput computer-aided soft materials discovery. Here, we present a method that, combining machine learning and CG techniques, can replace traditional backmapping-based approaches without sacrificing accuracy. We illustrate the method for an emerging class of soft electronic materials, namely non-conjugated, radical-containing polymers, promising materials for all-organic energy storage. Supervised machine learning models are trained to learn the dependence of electronic properties on polymer conformation at CG resolutions. We then parametrize CG models that retain electronic structure information, simulate CG condensed phases, and predict the electronic properties of such phases solely from the CG degrees of freedom. We validate our method by comparing it against a full backmapping-based approach, and find good agreement between both methods. This work demonstrates the potential of the proposed method to accelerate multiscale workflows, and provides a framework for the development of CG models that retain electronic structure information.