论文标题

通过知识合并的课堂学习学习

Class-Incremental Learning via Knowledge Amalgamation

论文作者

de Carvalho, Marcus, Pratama, Mahardhika, Zhang, Jie, San, Yajuan

论文摘要

灾难性的遗忘是阻碍在持续学习环境中部署深度学习算法的一个重大问题。已经提出了许多方法来解决灾难性遗忘问题,在学习新任务时,代理商在旧任务中失去了其旧任务的概括。我们提出了一种替代策略,可以通过知识合并(CFA)来处理灾难性遗忘,该策略从多个专门从事以前任务的多个异构教师模型中学习了学生网络,并可以应用于当前的离线方法。知识融合过程以单头方式进行,只有选定数量的记忆样本,没有注释。教师和学生无需共享相同的网络结构,从而使异质任务适应紧凑或稀疏的数据表示。我们将我们的方法与来自不同策略的竞争基线进行比较,证明了我们的方法的优势。

Catastrophic forgetting has been a significant problem hindering the deployment of deep learning algorithms in the continual learning setting. Numerous methods have been proposed to address the catastrophic forgetting problem where an agent loses its generalization power of old tasks while learning new tasks. We put forward an alternative strategy to handle the catastrophic forgetting with knowledge amalgamation (CFA), which learns a student network from multiple heterogeneous teacher models specializing in previous tasks and can be applied to current offline methods. The knowledge amalgamation process is carried out in a single-head manner with only a selected number of memorized samples and no annotations. The teachers and students do not need to share the same network structure, allowing heterogeneous tasks to be adapted to a compact or sparse data representation. We compare our method with competitive baselines from different strategies, demonstrating our approach's advantages.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源