论文标题

深度神经网络增强基于preamble的无线通道估计芯片上的Zynq系统上的ofdm Phy

Deep Neural Network Augmented Wireless Channel Estimation for Preamble-based OFDM PHY on Zynq System on Chip

论文作者

haq, Syed Asrar ul, Gizzini, Abdul Karim, Shrey, Shakti, Darak, Sumit J., Saurabh, Sneh, Chafii, Marwa

论文摘要

可靠且快速的渠道估计对于支持广泛的车辆和低延迟服务的下一代无线网络至关重要。最近,基于深度学习(DL)的通道估计已被探索为传统最小二乘(LS)和线性最小均方误差(LMMSE)方法的有效替代方法。这些DL方法中的大多数尚未在片上的系统(SOC)上实现,初步研究表明,它们的复杂性超过了整个物理层(PHY)的复杂性。 DL的高潜伏期是另一个问题。本文考虑了基于前序的正交频差距(OFDM)物理层(PHY)的基于LS LS的深神经网络(DNN)的设计和实现。与常规的LS和LMMSE方法相比,我们证明了性能的增长。通过软件硬件共同设计,文字长度优化和可重构体系结构,我们证明了LSDNN优于LS和LMMSE的优越性,以实现广泛的信噪比(SNR),飞行员的数量,preamble类型和无线通道。此外,我们评估了45 nm技术中的LS和LSDNN应用特定集成电路(ASIC)实现的性能,功率和区域(PPA)。我们证明,文字长度优化可以基本上改善ASIC实现中建议的体系结构的PPA。

Reliable and fast channel estimation is crucial for next-generation wireless networks supporting a wide range of vehicular and low-latency services. Recently, deep learning (DL) based channel estimation has been explored as an efficient alternative to conventional least-square (LS) and linear minimum mean square error (LMMSE) approaches. Most of these DL approaches have not been realized on system-on-chip (SoC), and preliminary study shows that their complexity exceeds the complexity of the entire physical layer (PHY). The high latency of DL is another concern. This paper considers the design and implementation of deep neural network (DNN) augmented LS-based channel estimation (LSDNN) for preamble-based orthogonal frequency-division multiplexing (OFDM) physical layer (PHY) on SoC. We demonstrate the gain in performance compared to the conventional LS and LMMSE approaches. Via software-hardware co-design, word-length optimization, and reconfigurable architectures, we demonstrate the superiority of the LSDNN over the LS and LMMSE for a wide range of signal-to-noise ratio (SNR), number of pilots, preamble types, and wireless channels. Further, we evaluate the performance, power, and area (PPA) of the LS and LSDNN application-specific integrated circuit (ASIC) implementations in 45 nm technology. We demonstrate that word-length optimization can substantially improve PPA for the proposed architecture in ASIC implementations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源