论文标题

基于人工和匿名培训的数据隐私培训基于多级分类器的失败预测

Multi-class Classifier based Failure Prediction with Artificial and Anonymous Training for Data Privacy

论文作者

Das, Dibakar, Seshasai, Vikram, Bhat, Vineet Sudhir, Juneja, Pushkal, Bapat, Jyotsna, Das, Debabrata

论文摘要

本文提出了一种新型的非侵入系统故障预测技术,使用来自开发人员的可用信息,以及来自原始日志中的最小信息(而不是挖掘整个日志),但与数据所有者完全保持数据。基于神经网络的多级分类器是为故障预测而开发的,使用人为生成的匿名数据集,应用技术的组合,即遗传算法(步骤),模式重复等,以训练和测试网络。所提出的机制完全将用于培训过程的数据集与保持私有的实际数据中。此外,多标准决策(MCDM)方案用于优先考虑满足业务需求的失败。结果显示出在不同的参数配置下的故障预测准确性。在更广泛的环境下,除了失败预测之外,任何分类问题都可以使用带有人工生成的数据集的所提出的机制执行,而无需查看实际数据,只要输入特征可以转化为二进制值(例如,私有二进制分类器的输出),并且可以提供分类-AS-AS-A-A-Service。

This paper proposes a novel non-intrusive system failure prediction technique using available information from developers and minimal information from raw logs (rather than mining entire logs) but keeping the data entirely private with the data owners. A neural network based multi-class classifier is developed for failure prediction, using artificially generated anonymous data set, applying a combination of techniques, viz., genetic algorithm (steps), pattern repetition, etc., to train and test the network. The proposed mechanism completely decouples the data set used for training process from the actual data which is kept private. Moreover, multi-criteria decision making (MCDM) schemes are used to prioritize failures meeting business requirements. Results show high accuracy in failure prediction under different parameter configurations. On a broader context, any classification problem, beyond failure prediction, can be performed using the proposed mechanism with artificially generated data set without looking into the actual data as long as the input features can be translated to binary values (e.g. output from private binary classifiers) and can provide classification-as-a-service.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源