论文标题

长期综合评估模型的双向耦合提醒v3.0.0,使用小时电源部门模型Dieter v1.0.2

Bidirectional coupling of a long-term integrated assessment model REMIND v3.0.0 with an hourly power sector model DIETER v1.0.2

论文作者

Gong, Chen Chris, Ueckerdt, Falko, Pietzcker, Robert, Odenweller, Adrian, Schill, Wolf-Peter, Kittel, Martin, Luderer, Gunnar

论文摘要

综合评估模型(IAMS)是对气候变化缓解策略进行定量分析的核心工具。但是,由于其全球,跨部门和百年范围,IAMS不能明确表示适当分析可变可再生电力(VRE)关键作用所需的时空细节(VRE)来脱碳和终端用途电气化。相比之下,电力部门模型(PSM)结合了高时空的分辨率,但倾向于范围较窄,时间范围较短。为了克服这些局限性,我们提出了一种新颖的方法:一个迭代且完全自动化的软耦合框架,结合了IAM和PSM的优势。该框架使用发电的市场价值以及PSM需求的捕获价格作为改变IAM的容量和功率组合的价格信号。因此,这两种模型都做出了内源性投资决策,从而实现了联合解决方案。我们在使用IAM提醒和PSM Dieter的概念验证研究中将方法应用于德国,并在决策变量和(影子)价格方面确认了几乎满足收敛的理论预测。在迭代过程结束时,对于任何一年的任何发电机类型的生成共享之间的绝对模型差异,对于简单的配置(没有存储,没有灵活的需求),对于更真实,更详细的配置(存储和灵活的需求),为6-7%。对于简单的配置,我们从数学上表明,这种耦合方案与两个电力部门优化问题的Lagrangians的迭代映射相对应,这可以导致两个决策变量的综合模型收敛和(影子)价格的全面收敛。由于我们的方法基于基本的经济原则,因此它也适用于其他IAM-PSM对。

Integrated assessment models (IAMs) are a central tool for the quantitative analysis of climate change mitigation strategies. However, due to their global, cross-sectoral and centennial scope, IAMs cannot explicitly represent the spatio-temporal detail required to properly analyze the key role of variable renewable electricity (VRE) for decarbonizing the power sector and end-use electrification. In contrast, power sector models (PSMs) incorporate high spatio-temporal resolutions, but tend to have narrower scopes and shorter time horizons. To overcome these limitations, we present a novel methodology: an iterative and fully automated soft-coupling framework that combines the strengths of a IAM and a PSM. This framework uses the market values of power generation as well as the capture prices of demand in the PSM as price signals that change the capacity and power mix of the IAM. Hence, both models make endogenous investment decisions, leading to a joint solution. We apply the method to Germany in a proof-of-concept study using the IAM REMIND and the PSM DIETER, and confirm the theoretical prediction of almost-full convergence both in terms of decision variables and (shadow) prices. At the end of the iterative process, the absolute model difference between the generation shares of any generator type for any year is <5% for a simple configuration (no storage, no flexible demand), and 6-7% for a more realistic and detailed configuration (with storage and flexible demand). For the simple configuration, we mathematically show that this coupling scheme corresponds uniquely to an iterative mapping of the Lagrangians of two power sector optimization problems of different time resolutions, which can lead to a comprehensive model convergence of both decision variables and (shadow) prices. Since our approach is based on fundamental economic principles, it is applicable also to other IAM-PSM pairs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源