论文标题

UPAR:统一的行人属性识别和人检索

UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval

论文作者

Specker, Andreas, Cormier, Mickael, Beyerer, Jürgen

论文摘要

在视频监视和时尚检索中,识别软性识别人行人属性至关重要。最近的作品在单个数据集上显示了有希望的结果。然而,由于当前数据集中的强偏见和不同的属性,这些方法在不同属性分布,观点,不同的照明和低分辨率下的概括能力仍然很少被理解。为了缩小这一差距并支持系统的调查,我们介绍了统一的人属性识别数据集UPAR。它基于四个知名人士属性识别数据集:PA100K,PETA,RAPV2和Market1501。我们通过提供3300万个其他注释来统一这些数据集,以在整个数据集的12个属性类别上协调40个重要的二进制属性。因此,我们首次对可概括的行人属性识别以及基于属性的人检索进行研究。由于图像分布,行人姿势,规模和遮挡的巨大差异,现有方法在准确性和效率方面都受到了极大的挑战。此外,我们基于对正则化方法的彻底分析,为基于PAR和属性的人检索开发了强大的基线。我们的模型在PA100K,PETA,RAPV2,Market1501-Atributes和Upar的跨域和专业设置中实现了最先进的性能。我们相信UPAR和我们的强大基线将为人工智能界做出贡献,并促进有关大规模,可推广属性识别系统的研究。

Recognizing soft-biometric pedestrian attributes is essential in video surveillance and fashion retrieval. Recent works show promising results on single datasets. Nevertheless, the generalization ability of these methods under different attribute distributions, viewpoints, varying illumination, and low resolutions remains rarely understood due to strong biases and varying attributes in current datasets. To close this gap and support a systematic investigation, we present UPAR, the Unified Person Attribute Recognition Dataset. It is based on four well-known person attribute recognition datasets: PA100K, PETA, RAPv2, and Market1501. We unify those datasets by providing 3,3M additional annotations to harmonize 40 important binary attributes over 12 attribute categories across the datasets. We thus enable research on generalizable pedestrian attribute recognition as well as attribute-based person retrieval for the first time. Due to the vast variance of the image distribution, pedestrian pose, scale, and occlusion, existing approaches are greatly challenged both in terms of accuracy and efficiency. Furthermore, we develop a strong baseline for PAR and attribute-based person retrieval based on a thorough analysis of regularization methods. Our models achieve state-of-the-art performance in cross-domain and specialization settings on PA100k, PETA, RAPv2, Market1501-Attributes, and UPAR. We believe UPAR and our strong baseline will contribute to the artificial intelligence community and promote research on large-scale, generalizable attribute recognition systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源