论文标题
非平衡汉伯里 - 布朗 - 尤利斯实验:理论和应用二进制恒星
Nonequilibrium Hanbury-Brown-Twiss experiment: Theory and application to binary stars
论文作者
论文摘要
基于汉伯里 - 布朗和Twiss的开创性实验来确定恒星Sirius的半径的强度开采量构成了开发光量子理论的基础。迄今为止,该实验的原理在量子光学,成像和天文学的不同领域的各种形式使用。但是,该技术是强大的,在不同温度下它尚未被概括用于物体。在这里,我们通过使用量子热光的P功能表示,使用生成的功能形式主义来解决这个问题。具体而言,我们使用此理论框架研究了在不同温度下两个扩展对象的系统的光子整合。我们在二阶量子相干函数中显示了两个独特的方面 - 干扰振荡和长基线渐近值取决于两个物体的观察频率,温度和大小。我们将我们的方法应用于二进制恒星的情况,并讨论了实验中测量这两个特征的优势。除了估算每个恒星的半径以及它们之间的距离之外,我们还表明,目前的方法也适合于温度的估计。为此,我们将其应用于Luhman 16和Spica $α$ vir的二进制恒星的实际情况。我们发现,对于当前可用的望远镜,在短期内可行的实验演示是可行的。我们的工作有助于对量子光线的强度干涉法的基本理解,并可以用作研究两体热发射器的工具 - 从二进制恒星到扩展物体。
Intensity-interferometry based on Hanbury-Brown and Twiss's seminal experiment for determining the radius of the star Sirius formed the basis for developing the quantum theory of light. To date, the principle of this experiment is used in various forms across different fields of quantum optics, imaging and astronomy. Though, the technique is powerful, it has not been generalized for objects at different temperatures. Here, we address this problem using a generating functional formalism by employing the P-function representation of quantum-thermal light. Specifically, we investigate the photon coincidences of a system of two extended objects at different temperature using this theoretical framework. We show two unique aspects in the second-order quantum coherence function - interference oscillations and a long-baseline asymptotic value that depends on the observation frequency, temperatures and size of both objects. We apply our approach to the case of binary stars and discuss the advantages of measuring these two features in an experiment. In addition to the estimation of the radii of each star and the distance between them, we also show that the present approach is suitable for the estimation of temperatures as well. To this end, we apply it to the practical case of binary stars Luhman 16 and Spica $α$ Vir. We find that for currently available telescopes, an experimental demonstration is feasible in the near term. Our work contributes to the fundamental understanding of intensity interferometry of quantum-thermal light and can be used as a tool for studying two-body thermal emitters - from binary stars to extended objects.