论文标题
多项式随机矩阵的浓度通过Efron-Stein不平等
Concentration of polynomial random matrices via Efron-Stein inequalities
论文作者
论文摘要
分析大型随机矩阵的浓度是多种领域的常见任务。给定独立的随机变量,许多工具可用于分析随机矩阵,其条目在变量中是线性的,例如基质 - 伯恩斯坦不平等。但是,在许多应用中,我们需要分析其条目是变量中多项式的随机矩阵。这些自然出现在光谱算法的分析中,例如霍普金斯等人。 [Stoc 2016],Moitra-Wein [Stoc 2019];并根据正方形层次结构的总和(例如Barak等。 [FOCS 2016],Jones等。 [焦点2021]。在这项工作中,我们基于Paulin-Mackey-tropp(概率Annals of Poybeility of 2016],基于矩阵Efron-Stein的不平等现象,提出了一个通用框架来获得此类界限。 Efron-Stein不等式通过另一个简单(但仍然是随机)矩阵的范围界定随机矩阵的规范,我们认为这是通过“区分”起始矩阵而产生的。通过递归区分,我们的框架减少了分析更简单矩阵的主要任务。对于Rademacher变量,这些简单的矩阵实际上是确定性的,因此,分析它们要容易得多。对于一般的非拉德马赫变量,任务减少到标量浓度,这要容易得多。此外,在多项式矩阵的设置中,我们的结果推广了Paulin-Mackey-Tropp的工作。使用我们的基本框架,我们在文献中恢复了简单的“张量网络”和“密集图矩阵”的已知界限。使用我们的一般框架,我们得出了“稀疏图矩阵”的边界,琼斯等人最近才获得。 [focs 2021]使用痕量功率方法的非平地应用,并且是其工作中的核心组成部分。我们希望我们的框架对涉及非线性随机矩阵浓度现象的其他应用有帮助。
Analyzing concentration of large random matrices is a common task in a wide variety of fields. Given independent random variables, many tools are available to analyze random matrices whose entries are linear in the variables, e.g. the matrix-Bernstein inequality. However, in many applications, we need to analyze random matrices whose entries are polynomials in the variables. These arise naturally in the analysis of spectral algorithms, e.g., Hopkins et al. [STOC 2016], Moitra-Wein [STOC 2019]; and in lower bounds for semidefinite programs based on the Sum of Squares hierarchy, e.g. Barak et al. [FOCS 2016], Jones et al. [FOCS 2021]. In this work, we present a general framework to obtain such bounds, based on the matrix Efron-Stein inequalities developed by Paulin-Mackey-Tropp [Annals of Probability 2016]. The Efron-Stein inequality bounds the norm of a random matrix by the norm of another simpler (but still random) matrix, which we view as arising by "differentiating" the starting matrix. By recursively differentiating, our framework reduces the main task to analyzing far simpler matrices. For Rademacher variables, these simpler matrices are in fact deterministic and hence, analyzing them is far easier. For general non-Rademacher variables, the task reduces to scalar concentration, which is much easier. Moreover, in the setting of polynomial matrices, our results generalize the work of Paulin-Mackey-Tropp. Using our basic framework, we recover known bounds in the literature for simple "tensor networks" and "dense graph matrices". Using our general framework, we derive bounds for "sparse graph matrices", which were obtained only recently by Jones et al. [FOCS 2021] using a nontrivial application of the trace power method, and was a core component in their work. We expect our framework to be helpful for other applications involving concentration phenomena for nonlinear random matrices.