论文标题

语言感知的域概括网络,用于跨景观高光谱图像分类

Language-aware Domain Generalization Network for Cross-Scene Hyperspectral Image Classification

论文作者

Zhang, Yuxiang, Zhang, Mengmeng, Li, Wei, Wang, Shuai, Tao, Ran

论文摘要

在高光谱图像分类(HSI)任务中,忽略了包括有关土地覆盖类别的大量先验知识在内的文本信息。有必要探索语言模式在协助HSI分类方面的有效性。此外,大规模训练的图像文本基础模型在各种下游应用中都表现出了出色的性能,包括零拍传输。但是,大多数领域的概括方法从未解决过采矿语言模态知识以提高模型的概括性能。为了弥补上述不足的不足,提出了一个语言感知的域概括网络(LDGNET),以从跨域共享的先验知识中学习跨域不变的表示。所提出的方法仅在源域(SD)上训练,然后将模型传输到目标域(TD)。包括图像编码器和文本编码器在内的双流体系结构用于提取视觉和语言特征,其中粗粒和细粒度的文本表示旨在提取两个级别的语言特征。此外,语言特征被用作跨域共享的语义空间,并且通过在语义空间中的对比度学习来完成视觉语言对齐。与最新技术相比,三个数据集上的大量实验证明了该方法的优越性。

Text information including extensive prior knowledge about land cover classes has been ignored in hyperspectral image classification (HSI) tasks. It is necessary to explore the effectiveness of linguistic mode in assisting HSI classification. In addition, the large-scale pre-training image-text foundation models have demonstrated great performance in a variety of downstream applications, including zero-shot transfer. However, most domain generalization methods have never addressed mining linguistic modal knowledge to improve the generalization performance of model. To compensate for the inadequacies listed above, a Language-aware Domain Generalization Network (LDGnet) is proposed to learn cross-domain invariant representation from cross-domain shared prior knowledge. The proposed method only trains on the source domain (SD) and then transfers the model to the target domain (TD). The dual-stream architecture including image encoder and text encoder is used to extract visual and linguistic features, in which coarse-grained and fine-grained text representations are designed to extract two levels of linguistic features. Furthermore, linguistic features are used as cross-domain shared semantic space, and visual-linguistic alignment is completed by supervised contrastive learning in semantic space. Extensive experiments on three datasets demonstrate the superiority of the proposed method when compared with state-of-the-art techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源