论文标题

由人工旋冰结构制成的磁混合系统和扩展的Nife卧式的磁性混合系统中的动态耦合和自旋波散

Dynamic coupling and spin-wave dispersions in a magnetic hybrid system made of an artificial spin-ice structure and an extended NiFe underlayer

论文作者

Negrello, R., Montoncello, F., Kaffash, M. T., Jungfleisch, M. B., Gubbiotti, G.

论文摘要

我们介绍了Nife人造自旋(ASI)系统中自旋波散的合并实验和数值研究,该系统由一个沉积在连续的Nife膜顶部的体育场形状的纳米群落组成,这些纳米群落具有不同厚度的非磁性间隔层。通过波向量测量的自旋波分散液在Damon-Eshbach构型中分辨出Brillouin光散射光谱,由许多模式组成,具有固定或传播特征。我们发现,最低频率模式的带宽约为0.5 GHz,这与下面的膜的存在无关。相反,某些检测到的模式的BLS强度在很大程度上取决于延长的薄膜底层的存在。微磁模拟揭示了ASI晶格和膜底层之间动态耦合的细节。有趣的是,ASI晶格促进了膜特定波长的动力学,或者在膜中刻有ASI元素模式特有的强度调制。我们的结果表明,可以通过在垂直方向上利用动态模式耦合(即适当设计的宏伟的宏伟岩石结构的平面外向)来调制传播自旋波。

We present a combined experimental and numerical study of the spin-wave dispersion in NiFe artificial spin-ice (ASI) system consisting of an array of stadium-shaped nanoislands deposited on the top of a continuous NiFe film with nonmagnetic spacer layers of varying thickness. The spin-wave dispersion, measured by wavevector resolved Brillouin light scattering spectroscopy in the Damon-Eshbach configuration, consists of a rich number of modes, with either stationary or propagating character. We find that the lowest frequency mode displays a bandwidth of approximately 0.5 GHz, which is independent of the presence of the film underneath. On the contrary, the BLS intensity of some of the detected modes strongly depends on the presence of the extended thin-film underlayer. Micromagnetic simulations unveil the details of the dynamic coupling between ASI lattice and film underlayer. Interestingly, the ASI lattice facilitates dynamics of the film either specific wavelengths or intensity modulation peculiar to the modes of the ASI elements imprinted in the film. Our results demonstrate that propagating spin waves can be modulated at the nanometer length scale by harnessing the dynamic mode coupling in the vertical, i.e., the out-of-plane direction of suitably designed magnonic structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源