论文标题

完美匹配的蜂窝图

Perfect Matching Complexes of Honeycomb Graphs

论文作者

Bayer, Margaret, Milutinović, Marija Jelić, Vega, Julianne

论文摘要

图的{\ em完美匹配的复合物}是图形的边缘集上的简单复合物,其刻面与图形的完美匹配相对应。本文研究了Honeycomb图的完美匹配复合物,$ \ MATHCAL {M} _p(H_ {K \ Times M \ Times M \ Times N})$。对于$ k = 1 $,$ \ mathcal {m} _p(h_ {1 \ times m \ times m \ times n})$是合理的,除非$ n \ ge m = 2 $,在这种情况下,它与$(n-1)$ - sphere等于同等。另外,$ \ MATHCAL {M} _p(H_ {2 \ times 2 \ times 2})$是同质的,等效于两个3 spheres的楔形。证明使用离散的摩尔斯理论。

The {\em perfect matching complex} of a graph is the simplicial complex on the edge set of the graph with facets corresponding to perfect matchings of the graph. This paper studies the perfect matching complexes, $\mathcal{M}_p(H_{k \times m\times n})$, of honeycomb graphs. For $k = 1$, $\mathcal{M}_p(H_{1\times m\times n})$ is contractible unless $n\ge m=2$, in which case it is homotopy equivalent to the $(n-1)$-sphere. Also, $\mathcal{M}_p(H_{2\times 2\times 2})$ is homotopy equivalent to the wedge of two 3-spheres. The proofs use discrete Morse theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源