论文标题

CP-AGCN:基于Pytorch的注意知情图形卷积网络,用于识别有脑瘫风险的婴儿

CP-AGCN: Pytorch-based Attention Informed Graph Convolutional Network for Identifying Infants at Risk of Cerebral Palsy

论文作者

Zhang, Haozheng, Ho, Edmond S. L., Shum, Hubert P. H.

论文摘要

早期预测在临床上被认为是脑瘫(CP)治疗的重要部分之一。我们建议实施一个基于一般运动评估(GMA)的CP预测的低成本和可解释的分类系统。我们设计了一个基于Pytorch的注意力图形卷积网络,以识别从RGB视频中提取的骨骼数据中有CP风险的早期婴儿。我们还设计了一个频率模块,用于在过滤噪声时学习频域中的CP运动。我们的系统仅需要消费级RGB视频进行培训,以通过提供可解释的CP分类结果来支持交互式时间CP预测。

Early prediction is clinically considered one of the essential parts of cerebral palsy (CP) treatment. We propose to implement a low-cost and interpretable classification system for supporting CP prediction based on General Movement Assessment (GMA). We design a Pytorch-based attention-informed graph convolutional network to early identify infants at risk of CP from skeletal data extracted from RGB videos. We also design a frequency-binning module for learning the CP movements in the frequency domain while filtering noise. Our system only requires consumer-grade RGB videos for training to support interactive-time CP prediction by providing an interpretable CP classification result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源