论文标题

欧拉的极限 - 重新审视

Euler's Limit -- Revisited

论文作者

Chakraborty, Bikash, Chakraborty, Sagar

论文摘要

简短说明的目的是,如果$ \ {a_ {n} \} $和$ \ {b_ {n} \} $是两个正实数的两个序列,以至于$ a_ {n} \ to +a_ {n} \ to +b_n $ and $ b_n $满足ysymptotic $ b_n \ sim $ sim $ sim $ s_ $ n wer $ \ lim \ limits_ {n \ to \ infty} \ left(1+ \ frac {1} {a_ {n}}} \ right)^{b_ {n}} = e^{k} $。

The aim of this short note is that if $\{ a_{n}\}$ and $\{ b_{n}\}$ are two sequences of positive real numbers such that $a_{n}\to +\infty$ and $b_n$ satisfying the asymptotic formula $b_n\sim k\cdot a_{n}$, where $k>0$, then $\lim\limits_{n\to\infty}\left(1+\frac{1}{a_{n}}\right)^{b_{n}}= e^{k}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源