论文标题
可解释的人工智能使用卷积神经网络检测图像垃圾邮件
Explainable Artificial Intelligence to Detect Image Spam Using Convolutional Neural Network
论文作者
论文摘要
图像垃圾邮件威胁检测一直是互联网惊人扩展的流行研究领域。这项研究提出了一个可解释的框架,用于使用卷积神经网络(CNN)算法和可解释的人工智能(XAI)算法检测垃圾邮件图像。在这项工作中,我们使用CNN模型分别对图像垃圾邮件进行了分类,而HOC XAI方法(包括本地可解释的模型不可思议的解释(Lime)和Shapley添加说明(SHAP))的决定提供了解释,以提供有关垃圾邮件图像检测的黑盒CNN模型的决定。我们在6636图像数据集上训练,然后评估提出方法的性能,包括垃圾邮件图像和从三个不同公开电子邮件Corpora收集的垃圾邮件图像和正常图像。实验结果表明,根据不同的性能指标,提出的框架实现了令人满意的检测结果,而独立于模型的XAI算法可以为不同模型的决策提供解释,以比较未来的研究。
Image spam threat detection has continually been a popular area of research with the internet's phenomenal expansion. This research presents an explainable framework for detecting spam images using Convolutional Neural Network(CNN) algorithms and Explainable Artificial Intelligence (XAI) algorithms. In this work, we use CNN model to classify image spam respectively whereas the post-hoc XAI methods including Local Interpretable Model Agnostic Explanation (LIME) and Shapley Additive Explanations (SHAP) were deployed to provide explanations for the decisions that the black-box CNN models made about spam image detection. We train and then evaluate the performance of the proposed approach on a 6636 image dataset including spam images and normal images collected from three different publicly available email corpora. The experimental results show that the proposed framework achieved satisfactory detection results in terms of different performance metrics whereas the model-independent XAI algorithms could provide explanations for the decisions of different models which could be utilized for comparison for the future study.