论文标题

监督甘恩标准以进行知识产权保护

Supervised GAN Watermarking for Intellectual Property Protection

论文作者

Fei, Jianwei, Xia, Zhihua, Tondi, Benedetta, Barni, Mauro

论文摘要

我们提出了一种保护生成对抗网络(GAN)的知识产权(IP)的水印方法。目的是为GAN模型加水印,以便gan产生的任何图像都包含一个无形的水印(签名),其在图像中的存在可以在以后的阶段检查以进行所有权验证。为了实现这一目标,在发电机的输出上插入了预先训练的CNN水印解码块。然后通过包括水印损失项来修改发电机损耗,以确保可以从生成的图像中提取规定的水印。水印是通过微调嵌入的,具有降低的时间复杂性。结果表明,我们的方法可以有效地将无形的水印嵌入生成的图像中。此外,我们的方法是一种通用方法,可以使用不同的GAN体系结构,不同的任务以及输出图像的不同分辨率。我们还证明了嵌入式水印的良好鲁棒性能与几个后加工,其中包括JPEG压缩,噪声添加,模糊和色彩转化。

We propose a watermarking method for protecting the Intellectual Property (IP) of Generative Adversarial Networks (GANs). The aim is to watermark the GAN model so that any image generated by the GAN contains an invisible watermark (signature), whose presence inside the image can be checked at a later stage for ownership verification. To achieve this goal, a pre-trained CNN watermarking decoding block is inserted at the output of the generator. The generator loss is then modified by including a watermark loss term, to ensure that the prescribed watermark can be extracted from the generated images. The watermark is embedded via fine-tuning, with reduced time complexity. Results show that our method can effectively embed an invisible watermark inside the generated images. Moreover, our method is a general one and can work with different GAN architectures, different tasks, and different resolutions of the output image. We also demonstrate the good robustness performance of the embedded watermark against several post-processing, among them, JPEG compression, noise addition, blurring, and color transformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源