论文标题

PMU跟踪器:电网中中心事件传播分析的可视化平台

PMU Tracker: A Visualization Platform for Epicentric Event Propagation Analysis in the Power Grid

论文作者

Arunkumar, Anjana, Pinceti, Andrea, Sankar, Lalitha, Bryan, Chris

论文摘要

电力网格是一个关键的基础设施,在多个部门的日常活动中具有严重影响的传播中断。为了识别,预防和减轻此类事件,将电网翻新为“智能”系统,其中包括启用GPS的相量测量单元(PMU)的广泛部署。 PMU提供了快速,精确和时间同步的电压和电流测量值,从而实现了实时广泛的监测和控制。但是,PMU的潜在优势是分析诸如异常功率振荡和负载波动之类的网格事件的可能性,这是由于这些传感器产生大量噪声数据的事实所阻碍。在本文中,我们描述了与电网工程师合作,以研究如何从视觉分析的角度解决此问题。结果,我们开发了PMU Tracker,这是一种事件本地化工具,该工具支持电网运算符在视觉分析和识别电网事件并通过Power Grid网络跟踪其传播。作为PMU跟踪器接口的一部分,我们开发了一种新颖的可视化技术,我们将其称为中心集群树状图,该图允许操作员分析事件从源位置向外传播时的效果。我们可以使用以下方式稳健地验证PMU跟踪器:(1)用法场景,证明了如何使用PMU跟踪器分析异常网格事件,以及(2)使用现实世界中的互连数据集使用功率网格操作员进行案例研究。我们的结果表明,PMU跟踪器有效地支持了电网事件的分析;我们还演示并讨论了如何将PMU Tracker的视觉分析方法推广到由具有中心事件特征的时变网络组成的其他域。

The electrical power grid is a critical infrastructure, with disruptions in transmission having severe repercussions on daily activities, across multiple sectors. To identify, prevent, and mitigate such events, power grids are being refurbished as 'smart' systems that include the widespread deployment of GPS-enabled phasor measurement units (PMUs). PMUs provide fast, precise, and time-synchronized measurements of voltage and current, enabling real-time wide-area monitoring and control. However, the potential benefits of PMUs, for analyzing grid events like abnormal power oscillations and load fluctuations, are hindered by the fact that these sensors produce large, concurrent volumes of noisy data. In this paper, we describe working with power grid engineers to investigate how this problem can be addressed from a visual analytics perspective. As a result, we have developed PMU Tracker, an event localization tool that supports power grid operators in visually analyzing and identifying power grid events and tracking their propagation through the power grid's network. As a part of the PMU Tracker interface, we develop a novel visualization technique which we term an epicentric cluster dendrogram, which allows operators to analyze the effects of an event as it propagates outwards from a source location. We robustly validate PMU Tracker with: (1) a usage scenario demonstrating how PMU Tracker can be used to analyze anomalous grid events, and (2) case studies with power grid operators using a real-world interconnection dataset. Our results indicate that PMU Tracker effectively supports the analysis of power grid events; we also demonstrate and discuss how PMU Tracker's visual analytics approach can be generalized to other domains composed of time-varying networks with epicentric event characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源