论文标题

分层图池是一个有效的全市交通状况预测模型

Hierarchical Graph Pooling is an Effective Citywide Traffic Condition Prediction Model

论文作者

Pu, Shilin, Chu, Liang, Hou, Zhuoran, Hu, Jincheng, Huang, Yanjun, Zhang, Yuanjian

论文摘要

准确的交通状况预测为车辆环境协调和交通管制任务提供了坚实的基础。由于道路网络数据在空间分布中的复杂性以及深度学习方法的多样性,有效定义流量数据并充分捕获数据中复杂的空间非线性特征变得具有挑战性。本文将两种分层图池方法应用于流量预测任务,以减少图形信息冗余。首先,本文验证了流量预测任务中层次图池方法的有效性。分层图合并方法与其他基线在预测性能上形成鲜明对比。其次,应用了两种主流层次图池池,节点群集池和节点下降池,用于分析流量预测中的优势和弱点。最后,对于上述图神经网络,本文比较了不同图网络输入对流量预测准确性的预测效果。分析和汇总定义图网络的有效方法。

Accurate traffic conditions prediction provides a solid foundation for vehicle-environment coordination and traffic control tasks. Because of the complexity of road network data in spatial distribution and the diversity of deep learning methods, it becomes challenging to effectively define traffic data and adequately capture the complex spatial nonlinear features in the data. This paper applies two hierarchical graph pooling approaches to the traffic prediction task to reduce graph information redundancy. First, this paper verifies the effectiveness of hierarchical graph pooling methods in traffic prediction tasks. The hierarchical graph pooling methods are contrasted with the other baselines on predictive performance. Second, two mainstream hierarchical graph pooling methods, node clustering pooling and node drop pooling, are applied to analyze advantages and weaknesses in traffic prediction. Finally, for the mentioned graph neural networks, this paper compares the predictive effects of different graph network inputs on traffic prediction accuracy. The efficient ways of defining graph networks are analyzed and summarized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源