论文标题

心脏MR Cine成像的基于学习和展开的运动补偿重建

Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging

论文作者

Pan, Jiazhen, Rueckert, Daniel, Küstner, Thomas, Hammernik, Kerstin

论文摘要

运动补偿的MR重建(MCMR)是一个强大的概念,具有巨大的潜力,由两个耦合的子问题组成:运动估计,假设已知图像和图像重建,假设已知运动。在这项工作中,我们为MCMR提出了一个基于学习的自我监督框架,以有效处理心脏MR成像中的非刚性运动腐败。与传统的MCMR方法相反,在重建之前估算运动并在迭代优化过程中保持不变,我们引入了动态运动估计过程,并将其嵌入到独立的优化中。我们建立了一个心脏运动估计网络,该网络通过小组的注册方法利用时间信息,并在运动估计和重建之间进行联合优化。 40个获得的2D心脏MR Cine数据集的实验表明,所提出的展开的MCMR框架可以以高加速度的速率重建高质量的MR图像,而其他最先进的方法失败。我们还表明,关节优化机制对两个子任务(即运动估计和图像重建)都是互惠互利的,尤其是当MR图像高度不足时。

Motion-compensated MR reconstruction (MCMR) is a powerful concept with considerable potential, consisting of two coupled sub-problems: Motion estimation, assuming a known image, and image reconstruction, assuming known motion. In this work, we propose a learning-based self-supervised framework for MCMR, to efficiently deal with non-rigid motion corruption in cardiac MR imaging. Contrary to conventional MCMR methods in which the motion is estimated prior to reconstruction and remains unchanged during the iterative optimization process, we introduce a dynamic motion estimation process and embed it into the unrolled optimization. We establish a cardiac motion estimation network that leverages temporal information via a group-wise registration approach, and carry out a joint optimization between the motion estimation and reconstruction. Experiments on 40 acquired 2D cardiac MR CINE datasets demonstrate that the proposed unrolled MCMR framework can reconstruct high quality MR images at high acceleration rates where other state-of-the-art methods fail. We also show that the joint optimization mechanism is mutually beneficial for both sub-tasks, i.e., motion estimation and image reconstruction, especially when the MR image is highly undersampled.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源