论文标题

更简单是更好的:用于流量预测的图形卷积复发性神经网络单元的多级抽象

Simpler is better: Multilevel Abstraction with Graph Convolutional Recurrent Neural Network Cells for Traffic Prediction

论文作者

Roudbari, Naghmeh Shafiee, Patterson, Zachary, Eicker, Ursula, Poullis, Charalambos

论文摘要

近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测尤其如此,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个级别的抽象上提取时空相关性,与更复杂的设计相比,训练时间缩短了训练时间。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对MSLTD街道级别数据集的实验结果表明,与其他竞争方法相比,我们的模型可提高性能超过7%。

In recent years, graph neural networks (GNNs) combined with variants of recurrent neural networks (RNNs) have reached state-of-the-art performance in spatiotemporal forecasting tasks. This is particularly the case for traffic forecasting, where GNN models use the graph structure of road networks to account for spatial correlation between links and nodes. Recent solutions are either based on complex graph operations or avoiding predefined graphs. This paper proposes a new sequence-to-sequence architecture to extract the spatiotemporal correlation at multiple levels of abstraction using GNN-RNN cells with sparse architecture to decrease training time compared to more complex designs. Encoding the same input sequence through multiple encoders, with an incremental increase in encoder layers, enables the network to learn general and detailed information through multilevel abstraction. We further present a new benchmark dataset of street-level segment traffic data from Montreal, Canada. Unlike highways, urban road segments are cyclic and characterized by complicated spatial dependencies. Experimental results on the METR-LA benchmark highway and our MSLTD street-level segment datasets demonstrate that our model improves performance by more than 7% for one-hour prediction compared to the baseline methods while reducing computing resource requirements by more than half compared to other competing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源