论文标题

与独立子空间结合的向量空间

Vector spaces with a union of independent subspaces

论文作者

Berarducci, Alessandro, Mamino, Marcello, Mennuni, Rosario

论文摘要

由本地定义群体理论的促进,我们研究了$ k $ - 向量空间的理论,其谓词是无限的独立子空间家族的$ x $的谓词。我们表明,如果$ k $是无限的,那么该理论是完整的,并以$ k $ - 矢量空间的语言消除了量化符,其本身为$ n $ fold $ x $的谓词。如果$ k $是有限的,这将不再正确,但是我们仍然有自然完成是近模型的。

Motivated by the theory of locally definable groups, we study the theory of $K$-vector spaces with a predicate for the union $X$ of an infinite family of independent subspaces. We show that if $K$ is infinite then the theory is complete and admits quantifier elimination in the language of $K$-vector spaces with predicates for the $n$-fold sums of $X$ with itself. If $K$ is finite this is no longer true, but we still have that a natural completion is near-model-complete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源