论文标题

非热谱流和浆果樱桃单极管

Non-Hermitian spectral flows and Berry-Chern monopoles

论文作者

Jezequel, Lucien, Delplace, Pierre

论文摘要

我们提出了光谱流与带交叉点(浆果 - 樱桃单托尔)的拓扑电荷之间的对应关系的非热概括。一类显示复杂频谱流的非热汉密尔顿人通过在保留其分析指数的同时构建复杂值的光谱流。我们将这些光谱流与普遍的Chern数字相关联,我们表明的是与赫米尔式案例相同的,只要存在线间隙即可。我们证明了非官员Chern数量和光谱流量指数的同一不变性,从而明确了它们的拓扑性质。在没有线间隙的情况下,我们的系统仍会显示一个光谱流,可以通过利用出现的伪 - 温米对称性来捕获其拓扑。

We propose a non-Hermitian generalization of the correspondence between the spectral flow and the topological charges of band crossing points (Berry-Chern monopoles). A class of non-Hermitian Hamiltonians that display a complex-valued spectral flow is built by deforming an Hermitian model while preserving its analytical index. We relate those spectral flows to a generalized Chern number that we show to be equal to that of the Hermitian case, provided a line gap exists. We demonstrate the homotopic invariance of both the non-Hermitian Chern number and the spectral flow index, making explicit their topological nature. In the absence of a line gap, our system still displays a spectral flow whose topology can be captured by exploiting an emergent pseudo-Hermitian symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源