论文标题
替代Thomassé猜想的证明,可计数$ NE $ $ - 免费的posets
A Proof of the Alternate Thomassé Conjecture for Countable $NE$-Free Posets
论文作者
论文摘要
$ n $ free Poset是一个poset,其可比性图不会嵌入带有四个顶点的诱导路径。我们使用可计数$ n $ free Posets和一些标记的订购树的等级订单属性,以表明可数$ n $ free Poset具有一个或无限的许多兄弟姐妹,直到同构为同构。这部分证明了Thomassé为此班级提出的猜想。
An $N$-free poset is a poset whose comparability graph does not embed an induced path with four vertices. We use the well-quasi-order property of the class of countable $N$-free posets and some labelled ordered trees to show that a countable $N$-free poset has one or infinitely many siblings, up to isomorphism. This, partially proves a conjecture stated by Thomassé for this class.