论文标题

失去翻译:重新想象教育中的机器学习生命周期

Lost in Translation: Reimagining the Machine Learning Life Cycle in Education

论文作者

Liu, Lydia T., Wang, Serena, Britton, Tolani, Abebe, Rediet

论文摘要

机器学习(ML)技术在教育方面越来越普遍,从预测学生辍学的使用,到协助大学入学以及促进MOOC的兴起。鉴于这些新颖用途的快速增长,迫切需要调查ML技术如何支持长期以来的教育原则和目标。在这项工作中,我们阐明了这一复杂的景观绘制,以对教育专家的访谈中的定性见解。这些访谈包括对过去十年中著名应用ML会议上发表的ML教育(ML4ED)论文的深入评估。我们的中心研究目标是批判性地研究这些论文的陈述或暗示教育和社会目标如何与他们解决的ML问题保持一致。也就是说,技术问题的提出,目标,方法和对结果的解释在多大程度上与手头的教育问题保持一致。我们发现,在ML生命周期的两个部分中存在跨学科的差距,并且尤其突出:从教育目标和将预测转化为干预措施中的ML问题的提出。我们使用这些见解来提出扩展的ML生命周期,这也可能适用于在其他领域中使用ML。我们的工作加入了跨教育和ML研究的越来越多的荟萃分析研究,以及对ML社会影响的批判性分析。具体来说,它填补了对机器学习的主要技术理解与与学生合作的教育研究人员的观点和政策之间的差距。

Machine learning (ML) techniques are increasingly prevalent in education, from their use in predicting student dropout, to assisting in university admissions, and facilitating the rise of MOOCs. Given the rapid growth of these novel uses, there is a pressing need to investigate how ML techniques support long-standing education principles and goals. In this work, we shed light on this complex landscape drawing on qualitative insights from interviews with education experts. These interviews comprise in-depth evaluations of ML for education (ML4Ed) papers published in preeminent applied ML conferences over the past decade. Our central research goal is to critically examine how the stated or implied education and societal objectives of these papers are aligned with the ML problems they tackle. That is, to what extent does the technical problem formulation, objectives, approach, and interpretation of results align with the education problem at hand. We find that a cross-disciplinary gap exists and is particularly salient in two parts of the ML life cycle: the formulation of an ML problem from education goals and the translation of predictions to interventions. We use these insights to propose an extended ML life cycle, which may also apply to the use of ML in other domains. Our work joins a growing number of meta-analytical studies across education and ML research, as well as critical analyses of the societal impact of ML. Specifically, it fills a gap between the prevailing technical understanding of machine learning and the perspective of education researchers working with students and in policy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源