论文标题

满足笛卡尔产品的功率统治的巨大限制的图形

Graphs which satisfy a Vizing-like bound for power domination of Cartesian products

论文作者

Anderson, Sarah E., Kuenzel, Kirsti, Schuerger, Houston

论文摘要

功率支配是一个两步观察过程,用于监视电源网络,可以看作是统治和零强迫的组合。给定图形$ g $,可以使用此过程观察$ g $的所有顶点的子集$ s \ subseteq v(g)$,被称为$ g $的电力支配集,而功率支配数量为$ g $,$γ_p(g)$,是电动机中的最小角度数量。我们在图的顶点上介绍了一个新分区,以为功率支配号码提供下限。我们还考虑了两个图的笛卡尔产品的功率支配数字,即$ g \ box h $,并显示某些图满足了与功率支配数字有关的杂色型。特别是,我们证明,对于任何两棵树,$ t_1 $和$ t_2 $,$γ_p(t_1)γ_p(t_2)\ leqγ_p(t_1 \ box t_2)$。

Power domination is a two-step observation process that is used to monitor power networks and can be viewed as a combination of domination and zero forcing. Given a graph $G$, a subset $S\subseteq V(G)$ that can observe all vertices of $G$ using this process is known as a power dominating set of $G$, and the power domination number of $G$, $γ_P(G)$, is the minimum number of vertices in a power dominating set. We introduce a new partition on the vertices of a graph to provide a lower bound for the power domination number. We also consider the power domination number of the Cartesian product of two graphs, $G \Box H$, and show certain graphs satisfy a Vizing-like bound with regards to the power domination number. In particular, we prove that for any two trees $T_1$ and $T_2$, $γ_P(T_1)γ_P(T_2) \leq γ_P(T_1 \Box T_2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源