论文标题

时间分数扩散方程的逆源问题的唯一性具有奇异函数的时间

Uniqueness of inverse source problems for time-fractional diffusion equations with singular functions in time

论文作者

Liu, Yikan, Yamamoto, Masahiro

论文摘要

We consider a fractional diffusion equations of order $α\in(0,1)$ whose source term is singular in time: $(\partial_t^α+A)u(x,t)=μ(t)f(x)$, $(x,t)\inΩ\times(0,T)$, where $μ$ belongs to a Sobolev space of negative order.通过数据$ u | _ {ω\ times(0,t)} $确定$ f |_Ω$的逆源问题,用给定的子域$ω\subsetΩ$或$μ| _ {(0,t)} $ by数据$ | ___ {\ __ {x_0 \} $ type(通过将$μ\降低到l^2(0,t)$中的情况来证明唯一性。关键是将解决方案转换为具有常规函数的初始有限值问题。

We consider a fractional diffusion equations of order $α\in(0,1)$ whose source term is singular in time: $(\partial_t^α+A)u(x,t)=μ(t)f(x)$, $(x,t)\inΩ\times(0,T)$, where $μ$ belongs to a Sobolev space of negative order. In inverse source problems of determining $f|_Ω$ by the data $u|_{ω\times(0,T)}$ with a given subdomain $ω\subsetΩ$ or $μ|_{(0,T)}$ by the data $u|_{\{x_0\}\times(0,T)}$ with a given point $x_0\inΩ$, we prove the uniqueness by reducing to the case $μ\in L^2(0,T)$. The key is a transformation of a solution to an initial-boundary value problem with a regular function in time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源