论文标题
张量重建超出恒定等级
Tensor Reconstruction Beyond Constant Rank
论文作者
论文摘要
我们提供了深度3算术电路子类的重建算法。特别是,当给予黑盒访问超恒定等级的张量时,我们获得了第一个用于查找张量等级的有效算法,而最佳张量分解为等级一张量的总和。我们获得以下结果: 1。确定性算法,重建由$σ^{[k]} \ bigWedge^{[d]}σ$电路计算的多项式,时间$ \ Mathsf {poly}(n,n,d,d,d,d,c) 2。一种随机算法,重建由多线性计算的多项式$σ^{k]} \ prod^{[d]}σ$ circuits in Time $ \ Mathsf {poly}(poly}(n,n,d,d,d,c)\ cdot k^{k^{ 3。一种随机算法,该算法重建由set-multIrinear $σ^{k}} \ prod^{[d]}σ$ circuits in Time $ \ Mathsf {poly}(poly}(n,d,d,d,d,c) Q $如果$ \ MATHBB {F} = \ Mathbb {F} _Q $是一个有限字段,而如果$ \ Mathbb {f} $是无限的,则$ c $等于任何系数$ f $的最大位复杂性。 在我们工作之前,Bhargava,Saraf和Volkovich [BSV21]给出了等级$ K $恒定的情况的多项式时间算法。 这项工作的另一个贡献是纠正了Karnin和Shpilka [KS09]的论文的错误,该错误影响了[BSV21]的定理1.6。因此,[KS09,BSV21]的结果继续保持,参数设置稍差。为了解决错误,我们研究了$σπς$电路的句法和语义等级之间的关系。 我们通过引入一种学习等级保存坐标 - 覆盖面的技术来获得我们的改进。 [KS09]和[BSV21]尝试找到“正确”坐标的所有选择,这导致在$ n $的指数上具有$ k $的快速增长功能。我们发现这些空间随着$ K $而快速增长,但它只是$ n $中的固定多项式。
We give reconstruction algorithms for subclasses of depth-3 arithmetic circuits. In particular, we obtain the first efficient algorithm for finding tensor rank, and an optimal tensor decomposition as a sum of rank-one tensors, when given black-box access to a tensor of super-constant rank. We obtain the following results: 1. A deterministic algorithm that reconstructs polynomials computed by $Σ^{[k]}\bigwedge^{[d]}Σ$ circuits in time $\mathsf{poly}(n,d,c) \cdot \mathsf{poly}(k)^{k^{k^{10}}}$ 2. A randomized algorithm that reconstructs polynomials computed by multilinear $Σ^{k]}\prod^{[d]}Σ$ circuits in time $\mathsf{poly}(n,d,c) \cdot k^{k^{k^{k^{O(k)}}}}$ 3. A randomized algorithm that reconstructs polynomials computed by set-multilinear $Σ^{k]}\prod^{[d]}Σ$ circuits in time $\mathsf{poly}(n,d,c) \cdot k^{k^{k^{k^{O(k)}}}}$, where $c=\log q$ if $\mathbb{F}=\mathbb{F}_q$ is a finite field, and $c$ equals the maximum bit complexity of any coefficient of $f$ if $\mathbb{F}$ is infinite. Prior to our work, polynomial time algorithms for the case when the rank, $k$, is constant, were given by Bhargava, Saraf and Volkovich [BSV21]. Another contribution of this work is correcting an error from a paper of Karnin and Shpilka [KS09] that affected Theorem 1.6 of [BSV21]. Consequently, the results of [KS09, BSV21] continue to hold, with a slightly worse setting of parameters. For fixing the error we study the relation between syntactic and semantic ranks of $ΣΠΣ$ circuits. We obtain our improvement by introducing a technique for learning rank preserving coordinate-subspaces. [KS09] and [BSV21] tried all choices of finding the "correct" coordinates, which led to having a fast growing function of $k$ at the exponent of $n$. We find these spaces in time that is growing fast with $k$, yet it is only a fixed polynomial in $n$.