论文标题
部分可观测时空混沌系统的无模型预测
Time-domain modeling of interband transitions in plasmonic systems
论文作者
论文摘要
通过麦克斯韦方程的时域模拟对分散材料进行有效建模依赖于辅助微分方程的技术。在这种方法中,材料的频率介电常数是通过理性函数的总和来表示的,例如Lorentz-Poles和相关的自由参数是通过拟合实验数据来确定的。在目前的工作中,我们为等离子材料提供了一种修改的方法,该方法比传统方法所需的拟合参数要少得多。具体而言,我们考虑了基本的显微镜理论,在频域中,将准电子的流体动力学贡献与部分填充的谱带中分开,并将其与频带间的转变分开。作为例证,我们将方法应用于黄金,并通过连接到基础电子带结构,将有效模型中的带间过渡对待,从而将物理含义分配给其余拟合参数。最后,我们展示了如何在辅助微分方程技术中使用这种方法。我们的方法可以扩展到其他等离子体材料,并导致对必须考虑带间横向过渡的频率范围的等离子结构的有效时间域模拟。
Efficient modeling of dispersive materials via time-domain simulations of the Maxwell equations relies on the technique of auxiliary differential equations. In this approach, a material's frequency-dependent permittivity is represented via a sum of rational functions, e.g. Lorentz-poles, and the associated free parameters are determined by fitting to experimental data. In the present work, we present a modified approach for plasmonic materials that requires considerably fewer fit parameters than traditional approaches. Specifically, we consider the underlying microscopic theory and, in the frequency domain, separate the hydrodynamic contributions of the quasi-free electrons in partially filled bands from the interband transitions. As an illustration, we apply our approach to gold and demonstrate how to treat the interband transitions within the effective model via connecting to the underlying electronic bandstructure, thereby assigning physical meaning to the remaining fit parameters. Finally, we show how to utilize this approach within the technique of auxiliary differential equations. Our approach can be extended to other plasmonic materials and leads to efficient time-domain simulations of plasmonic structures for frequency ranges where interband transitions have to be considered.