论文标题
来自散装量子系统的奇怪相关器
Strange correlators for topological quantum systems from bulk-boundary correspondence
论文作者
论文摘要
“奇怪”相关器提供了一种工具,可以通过计算所研究状态和琐碎参考状态之间适当定义的两点相关性的矩阵元素来检测多体模型中产生的拓扑阶段。它们的有效性取决于采用运营商的选择。在本文中,我们为此选择提供了一个系统的程序,讨论了选择操作员使用审查中系统的庞大 - 边界对应关系的优势。通过缩放指数,我们将奇怪相关器的代数衰减与无间隙边缘模式运算符的缩放尺寸联系起来。我们从托管受对称保护的拓扑阶段的晶格模型开始分析,并分析了奇怪的相关因子的总和,指出整合其模量大大降低了取消和有限尺寸的效果。我们还分析了托管内在拓扑顺序的系统的实例,以及具有不同非平地拓扑的状态之间的奇怪相关因素。我们对转化和非翻译不变病例的结果,以及在现场障碍和远程耦合的情况下,我们扩展了奇怪的相关因子方法的有效性,以诊断物质拓扑阶段,并指出了其最佳选择的一般程序。
"Strange" correlators provide a tool to detect topological phases arising in many-body models by computing the matrix elements of suitably defined two-point correlations between the states under investigation and trivial reference states. Their effectiveness depends on the choice of the adopted operators. In this paper we give a systematic procedure for this choice, discussing the advantages of choosing operators using the bulk-boundary correspondence of the systems under scrutiny. Via the scaling exponents, we directly relate the algebraic decay of the strange correlators with the scaling dimensions of gapless edge modes operators. We begin our analysis with lattice models hosting symmetry-protected topological phases and we analyze the sums of the strange correlators, pointing out that integrating their moduli substantially reduces cancellations and finite-size effects. We also analyze instances of systems hosting intrinsic topological order, as well as strange correlators between states with different nontrivial topologies. Our results for both translational and non-translational invariant cases, and in presence of on-site disorder and long-range couplings, extend the validity of the strange correlators approach for the diagnosis of topological phases of matter, and indicate a general procedure for their optimal choice.