论文标题

在$ c^*$ - 代数和跌倒捆绑上的典型群体的动作

Amenability for actions of étale groupoids on $C^*$-algebras and Fell bundles

论文作者

Kranz, Julian

论文摘要

我们将雷诺对第二个可数的行动的概念概括,hausdorff,étalegropsoids在可分离的$ c^*$ - 代数上,并表明,每当$ c^*$ - 代数以核心作用的$ c^*$ - 核心的核能是核的。在第二个可数的Fell Bundles的更一般环境中,Hausdorff,étalegroupoids,我们介绍了Exel近似属性的版本。我们证明,每当单位束为核时,近似特性意味着横截面代数的核性。对于与群体固体作用相关的跌落束,我们表明近似属性意味着基础作用的衡量性舒适性。

We generalize Renault's notion of measurewise amenability to actions of second countable, Hausdorff, étale groupoids on separable $C^*$-algebras and show that measurewise amenability characterizes nuclearity of the crossed product whenever the $C^*$-algebra acted on is nuclear. In the more general context of Fell bundles over second countable, Hausdorff, étale groupoids, we introduce a version of Exel's approximation property. We prove that the approximation property implies nuclearity of the cross-sectional algebra whenever the unit bundle is nuclear. For Fell bundles associated to groupoid actions, we show that the approximation property implies measurewise amenability of the underlying action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源