论文标题

霍金型奇异定理,用于世界volumeEnergy不平等现象

Hawking-type singularity theorems for worldvolume energy inequalities

论文作者

Graf, Melanie, Kontou, Eleni-Alexandra, Ohanyan, Argam, Schinnerl, Benedict

论文摘要

1960年代的R. penrose和S. Hawking的经典奇异定理表明,鉴于能量条件(以及某些因果关系和初始假设),空间不能在地球上完成。尽管取得了巨大的成功,但这些定理为身体相关的改进留出了空间,尤其是关于经典能源条件,因为基本上任何量子场理论都必然违反了它们。尽管世界内部整体范围的能量条件存在弱的奇异定理,但在某些情况下,所谓的世界情绪界限比世界各地的界限更适用,例如某些庞大的自由领域的情况。在本文中,我们研究了基于WorldVolume量子强能不等式的RICCI曲率界限。在另外的假设 - 可能非常负的 - 全局时间式的RICCI曲率结合,证明了鹰型奇异定理。最后,我们将定理应用于宇宙学场景,在全球定理尚无定论的情况下证明过去的大地测量不完整。

The classical singularity theorems of R. Penrose and S. Hawking from the 1960s show that, given a pointwise energy condition (and some causality as well as initial assumptions), spacetimes cannot be geodesically complete. Despite their great success, the theorems leave room for physically relevant improvements, especially regarding the classical energy conditions as essentially any quantum field theory necessarily violates them. While singularity theorems with weakened energy conditions exist for worldline integral bounds, so called worldvolume bounds are in some cases more applicable than the worldline ones, such as the case of some massive free fields. In this paper we study integral Ricci curvature bounds based on worldvolume quantum strong energy inequalities. Under the additional assumption of a - potentially very negative - global timelike Ricci curvature bound, a Hawking type singularity theorem is proven. Finally, we apply the theorem to a cosmological scenario proving past geodesic incompleteness in cases where the worldline theorem was inconclusive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源