论文标题

多组分反应扩散系统的多尺度求解器异质介质

Multiscale solver for multi-component reaction-diffusion systems in heterogeneous media

论文作者

Vasilyeva, Maria, Sadovski, Alexey, Palaniappan, D.

论文摘要

考虑了描述多组分(物种)与异质系数的多组分相互作用的反应扩散方程的非线性系统。基于空间的有限体积方法的近似值用于构建用于计算数值解的半混凝土形式。检查了两种时间近似技术,即完全隐式(FI)和半涂抹(SI)方案。完全隐式的方案是使用牛顿的方法构建的,并在每个非线性和时间迭代上导致了计算上相当昂贵的方程式耦合系统。为了最大程度地减少后一个障碍,提出了一种有效且快速的多尺度求解器,用于异质介质中的反应扩散系统。为了构建快速求解器,我们应用了一个半图表方案,该方案为每个组件提供一个未耦合的系统。为了减小离散系统的大小,我们提出了一种多尺度模型减少技术。多尺度求解器基于问题的未耦合操作员,并通过使用通用多尺度有限元方法(GMSFEM)构建。在GMSFEM中,我们使用操作员的扩散部分,并构建多尺度基础函数。我们收集多尺度基础函数以构建投影/延长矩阵,并在粗网格上生成降低的订单模型以进行快速解决方案。此外,延长操作员用于重建问题的反应部分的精细尺度解决方案,然后导致非常准确且计算上有效的多尺度求解器。我们为具有异质夹杂物的二维域中的两个物种竞争测试问题提供了数值结果。我们研究了多尺度函数数量的影响对方法准确性和与扩散系数值不同的能力。

Coupled nonlinear system of reaction-diffusion equations describing multi-component (species) interactions with heterogeneous coefficients is considered. Finite volume method based approximation for the space is used to construct semi-discrete form for the computation of numerical solutions. Two techniques for time approximations, namely, a fully implicit (FI) and a semi-implicit (SI) schemes are examined. The fully implicit scheme is constructed using Newton's method and leads to the coupled system of equations on each nonlinear and time iterations which is computationally rather expensive. In order to minimize the latter hurdle, an efficient and fast multiscale solver is proposed for reaction-diffusion systems in heterogeneous media. To construct fast solver, we apply a semi-implicit scheme that leads to an uncoupled system for each individual component. To reduce the size of the discrete system, we present a multiscale model reduction technique. Multiscale solver is based on the uncoupled operator of the problem and constructed by the use of Generalized Multiscale Finite Element Method (GMsFEM). In GMsFEM we use a diffusion part of the operator and construct multiscale basis functions. We collect multiscale basis functions to construct a projection/prolongation matrix and generate reduced order model on the coarse grid for fast solution. Moreover, the prolongation operator is used to reconstruct a fine-scale solution and accurate approximation of the reaction part of the problem which then leads to a very accurate and computationally effective multiscale solver. We provide numerical results for two species competition test problems in two-dimensional domain with heterogeneous inclusions. We investigate the influence of number of the multiscale basis functions to the method accuracy and ability to work with different values of the diffusion coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源