论文标题

光谱超弹药通过链接

Spectral hypergraph sparsification via chaining

论文作者

Lee, James R.

论文摘要

在$ n $顶点的超图中,其中$ d $是高度的最大尺寸,其中有一个加权的超格光谱$ \ varepsilon $ -sparsifier,最多$ o(\ varepsilon^{-2}} \ log(d)这改善了Kapralov,Krauthgamer,Tardos和Yoshida(2021),他们实现了$ O(\ Varepsilon^{ - 4} n(\ log n)^3)$,以及BOUND $ O(\ \ varepsilon^{ - varepsilon^{-2} d n \ log n \ log n \ log n \ log n \ log n \ log n \ log n \ log n)$ cern by bansal and bans and bans and and and and s。 Jambulapati,Liu和Sidford(2022)独立获得了相同的稀疏结果。

In a hypergraph on $n$ vertices where $D$ is the maximum size of a hyperedge, there is a weighted hypergraph spectral $\varepsilon$-sparsifier with at most $O(\varepsilon^{-2} \log(D) \cdot n \log n)$ hyperedges. This improves over the bound of Kapralov, Krauthgamer, Tardos and Yoshida (2021) who achieve $O(\varepsilon^{-4} n (\log n)^3)$, as well as the bound $O(\varepsilon^{-2} D^3 n \log n)$ obtained by Bansal, Svensson, and Trevisan (2019). The same sparsification result was obtained independently by Jambulapati, Liu, and Sidford (2022).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源