论文标题
碱性介质中氢进化反应的催化剂:在Ag-Ag $ _2 $ s-MOS $ _2 $接口配置合作机制
Catalysts for the hydrogen evolution reaction in alkaline medium: Configuring a cooperative mechanism at the Ag-Ag$_2$S-MoS$_2$ interface
论文作者
论文摘要
在碱性条件下为她的电催化剂设计,以克服与额外的水解离步骤相关的动力学迟钝,这是促进氢经济的公认挑战。为此,精心调整纳米颗粒的原子尺度结构和表面组成是一种常见的策略,具体来说,使用杂种结构可以产生协同作用,从而导致高度活跃的催化剂。在这里,我们提出了Ag@Mos $ _2 $的核心壳催化剂,该催化剂在0.5 m H2SO4和0.5 M KOH中显示出对氢进化反应(HE)的有希望的结果。在这种杂种结构中,MOS $ _2 $壳会紧张且有缺陷,并且电荷转移发生在导电芯和壳之间,从而有助于电催化活性。炮击过程在核心中会导致大量的Ag $ _2 $ S,并调整Ag,Ag $ _2 $ S和MOS $ _2 $的相对部分导致改进的催化活性和快速充电转移动力学。我们建议,增强碱性HE的能力与界面的合作效应有关,其中Ag $ _2 $ s中的Ag(I)位点驱动水分离解步骤,然后形成的氢在有缺陷的MOS $ _2 $外壳上重新组合。这项研究证明了混合结构作为功能性纳米材料的好处,并提供了一种在碱性条件下激活MOS $ _2 $的方案。
Designing electrocatalysts for HER in alkaline conditions to overcome the sluggish kinetics associated with the additional water dissociation step is a recognized challenge in promoting the hydrogen economy. To this end, delicately tuning the atomic-scale structure and surface composition of nanoparticles is a common strategy and, specifically, making use of hybrid structures, can produce synergistic effects that lead to highly active catalysts. Here, we present a core-shell catalyst of Ag@MoS$_2$ that shows promising results towards the hydrogen evolution reaction (HER) in both 0.5 M H2SO4 and 0.5 M KOH. In this hybrid structure, the MoS$_2$ shell is strained and defective, and charge transfer occurs between the conductive core and the shell, contributing to the electrocatalytic activity. The shelling process results in a large fraction of Ag$_2$S in the cores, and adjusting the relative fractions of Ag, Ag$_2$S, and MoS$_2$ leads to improved catalytic activity and fast charge-transfer kinetics. We suggest that the enhancement of alkaline HER is associated with a cooperative effect of the interfaces, where the Ag(I) sites in Ag$_2$S drive the water dissociation step, and the formed hydrogen subsequently recombines on the defective MoS$_2$ shell. This study demonstrates the benefits of hybrid structures as functional nanomaterials and provides a scheme to activate MoS$_2$ for HER in alkaline conditions.