论文标题

关于自由偏斜字段的身份测试和非交通级别计算

On Identity Testing and Noncommutative Rank Computation over the Free Skew Field

论文作者

Arvind, V., Chatterjee, Abhranil, Ghosal, Utsab, Mukhopadhyay, Partha, Ramya, C.

论文摘要

自由偏斜场中有理公式(RIT)的身份测试有效地降低到计算矩阵的等级,该矩阵的条目是在非交通变量中的线性多项式\ cite {hw15}中的线性多项式。此等级计算问题具有确定的多项式时代白框算法\ cite {ggow16,iqs18}和黑色框设置中的随机多项式算法\ cite {dm17}。在本文中,我们提出了一种新方法,以有效地降低\ emph {black-box} rit。此外,我们在自由偏斜场上获得矩阵级别计算的结果,并为新的一类有理表达式构建有效的线性铅笔表示。更确切地说,我们显示以下结果: 1。在硬度假设的情况下,$ k \ times k $ k $矩阵代数的每个多项式身份的ABP(代数分支程序)的复杂性为$ 2^{ω(k)} $ \ cite {bw05},我们获得了几乎用于一般设置的次代表black-box algorithm。这可以看作是第一个“硬度意味着衍生物”的理性公式定理。 2。我们表明,可以在确定性的多项式时间内计算出条目的自由偏斜字段上任何矩阵的非交通等级。在此之前,有效的等级计算仅因具有非共同公式的矩阵而闻名,作为条目\ cite {ggow20}。作为我们算法的特殊情况,我们获得了第一个确定性多项式时间算法,用于对矩阵的等级计算,其条目是非交通ABP或有理公式的。 3。由伯格曼(Bergman)\ cite {ber76}给出的定义的动机,我们定义了一个包含非交流性ABP和理性公式的新类。我们获得了此类的多项式大小线性铅笔表示。作为副产品,我们获得了该类的白盒确定性多项式标识算法。

The identity testing of rational formulas (RIT) in the free skew field efficiently reduces to computing the rank of a matrix whose entries are linear polynomials in noncommuting variables\cite{HW15}. This rank computation problem has deterministic polynomial-time white-box algorithms \cite{GGOW16, IQS18} and a randomized polynomial-time algorithm in the black-box setting \cite{DM17}. In this paper, we propose a new approach for efficient derandomization of \emph{black-box} RIT. Additionally, we obtain results for matrix rank computation over the free skew field, and construct efficient linear pencil representations for a new class of rational expressions. More precisely, we show the following results: 1. Under the hardness assumption that the ABP (algebraic branching program) complexity of every polynomial identity for the $k\times k$ matrix algebra is $2^{Ω(k)}$ \cite{BW05}, we obtain a subexponential-time black-box algorithm for RIT in almost general setting. This can be seen as the first "hardness implies derandomization" type theorem for rational formulas. 2. We show that the noncommutative rank of any matrix over the free skew field whose entries have small linear pencil representations can be computed in deterministic polynomial time. Prior to this, an efficient rank computation was only known for matrices with noncommutative formulas as entries\cite{GGOW20}. As special cases of our algorithm, we obtain the first deterministic polynomial-time algorithms for rank computation of matrices whose entries are noncommutative ABPs or rational formulas. 3. Motivated by the definition given by Bergman\cite{Ber76}, we define a new class that contains noncommutative ABPs and rational formulas. We obtain a polynomial-size linear pencil representation for this class. As a by-product, we obtain a white-box deterministic polynomial-time identity testing algorithm for the class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源